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The material metrics for optimal laser cooling of ion-doped solids are derived using atomic and molecular
dynamics properties of the constituents. The anti-Stokes process is modeled as an optical phonon coupling of
the bound electron, followed by a photon absorption. The transition dipole moment is estimated using a
simplified charge-displacement model and the Judd–Ofelt theory of rare-earth ions both suggesting that tran-
sitions with high-energy gaps and similar angular momentum states should be used. The electron-phonon
coupling is interpreted as a derivative of electronic energy with respect to displacement of the nearest neigh-
boring ligands whose stretching mode frequency is approximated using the molecular data. The Debye-
Gaussian model is used for the phonon density of states of diatomic crystal. Then, the Fermi golden rule is used
for photon-induced, phonon-assisted electronic transition probability and applied to the cooling rate equation
by defining a phonon-assisted transition dipole moment. Based on the material metrics, an example blend is
investigated for its cooling performance and a general guide is proposed for selection of better performing laser
cooling hosts. Furthermore, the cooling rate limits are discussed and three distinct characteristic times are
identified with the photon-induced, phonon-assisted transition time controlling the rate. The metrics guide the
selection of host materials for optimal cooling, and predict a noticeable increase in the absorption rate when
using a blend of cation atoms.
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I. INTRODUCTION

Laser cooling of solids is achieved when a photon having
a lower frequency �energy� excites an electron with assis-
tance from a phonon and this is followed by a single photon
emission with a mean frequency higher than that of the inci-
dent photon �i.e., anti-Stokes process�. Pringsheim1 recog-
nized the possibility of the anti-Stokes process which was
later confirmed experimentally by Epstein et al.2 in the first
successful experiment of laser cooling of solids. The entropy
aspect of laser cooling of solids is discussed in Ref. 3
and a general review is given in Ref. 4. Host materials
including ZBLAN �ZrF4-BaF2-LaF3-AlF3-NaF�,5
ZBLANP �ZBLAN-PbF2�,6 YAG �Y3Al5O12�, CNBZn
�CdF2-CdCl2-NaF-BaF2-BaCl2-ZnF2�, and KPb2Cl5 �Ref. 7�
have been doped with various rare-earth ions, e.g., Yb3+,
Er3+, and Tm3+, and successfully laser cooled. In contrast to
experimental successes, the theoretical extension of the anti-
Stokes process has not advanced far, from the formulation by
Pringsheim.1 Thus, the theoretical approach to laser cooling
of solids has not allowed for predictive selection of materials
for efficient cooling. Recent theoretical analyses address lo-
calized electrons8 and strong electron-phonon coupling.9

However, further investigation of the interaction amongst the
three carriers, namely, photon, electron, and phonon, is
needed. Here we propose material selection metrics using
simplified theoretical models for the three-carrier interac-
tions, and suggest possible improvements in the materials
selection.

Figures 1�a�–1�c� demonstrate the materials, i.e., atomic
and molecular dynamics �MD�, metrics of the photon-
electron-phonon interactions in laser cooling of Yb3+-doped
solids. The photon-induced, phonon-assisted absorption pro-
cess is modeled as a phonon absorption, followed by a pho-
ton absorption. Three steps are identified: �a� phonon-

assisted absorption, �b� radiative decay, and �c� nonradiative
�purely phonon� decay. These are designated by their kinetics
represented by phonon-assisted transition time �ph-e-p, purely
radiative decay �e-ph, and purely phonon decay �e-p where
subscripts ph, e, and p represent photon, electron, and pho-
non, respectively.

As shown in Fig. 1�a�, the electron �in ion� oscillates be-
tween the ground level manifolds due to continuous excita-
tion by phonons �thermal vibrations�. At the same time, due
to changes in the position of the immediate neighboring
atom, the electronic wave function is altered resulting in os-
cillations of the energy levels within the manifold. This re-
flects the observed thermal broadening. Since the energy lev-
els of the manifolds are quantized and discrete, only allowed
phonons corresponding to the energy level difference are
able to promote electrons between these levels. Conversely,
when the energy spacings of the oscillating ground-state
manifold matches the available phonon modes, the electron
is promoted to a higher-energy level within the manifold.
Note that the these energy levels should exist within the lim-
its defined by the Heisenberg uncertainty theorem, which is
related to the natural broadening of these energy levels.10 In
the vicinity of the doped ions, the available local modes are
characterized by the normal modes of the ion-ligand com-
plex, which have attributes of optical phonon due to the
breathing mode. The displacement due to longitudinal optical
phonon is represented by �p. For the rare-earth ions, the
optically active fn shell electron is well localized �within the
atomic spacing of the ion-ligand complex�, thus the short-
wavelength phonons become important. The electron inter-
action with optical phonons will be discussed in the subse-
quent sections. When a photon is introduced, the photon
encounters an electron in oscillation and promotes it to the
excited level. This process is not only a function of the avail-
ability of phonons, but also a function of the transition dipole
moment �electron transition overlap integral�. Therefore, we
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examine the transition dipole moment as well as phonon
availability. When the electron is promoted to the excited
state, it has multiple paths through which it can decay back
to the ground state: purely radiative, purely nonradiative, and
vibronic transitions. Purely radiative decay process is shown
in Fig. 1�b�. The electron directly decays to the lowest lying
ground level by emitting a photon having a frequency equal
to its resonance transition frequency. This decay process is
normally the strongest transition at moderate temperatures.
Figure 1�c� shows the purely nonradiative process in which
the electron is deexcited by emitting multiple phonons simul-
taneously. This process dominates at high temperatures. Nev-
ertheless, for the rare-earth ions in a crystal, the purely non-
radiative decay is suppressed, because of the weak electron-
phonon interaction strength due to the localization of
optically active fn electron shell. This is one of the motiva-
tions of using rare-earth doped solids. Lastly, the electron
also can be deexcited by a vibronic process, i.e., emitting a
photon and a phonon that is, the opposite process of photon-
induced, phonon-assisted electron absorption.

The emission spectrum �dimensionless E
ph,e
* � of Yb3+:

ZBLANP is shown in Fig. 2�a�.11 Apart from the strongest
resonance transition �2F5/2�4→ �2F7/2�0, there exist three pho-
non side-band transitions designated as �1,2,3�. When the
mean absorbed phonon energy is larger than the average

emitted phonon �the three vibronic transitions�, cooling oc-
curs. The conditions for cooling and/or heating are

��ph,i − ��̄ph,e = ��p � 0 cooling �anti-Stokes process� ,

�1�

��ph,i − ��̄ph,e = ��p � 0 heating �Stokes process� ,

�2�

where �ph,i is the incoming photon frequency, �̄ph,e is the
average emission photon frequency, and �p is the phonon
frequency. The absorption spectrum �dimensionless E

ph,a
* � of

Yb3+: ZBLANP in Fig. 2�b� shows that there are also three
sublevels in the excited state manifold. The spectrum indi-
cates that the absorption intensity of the phonon-assisted
transition can be an order of magnitude lower than the reso-
nance transition. This reflects small second-order transition
rate which involves all three carriers compared to that of the
first-order process rate. One reason for such low transition
rate is the mismatch between normal modes of the ion-ligand
complex and the maximum available normal mode energy of
the crystal, resulting in a low cooling rate. Figure 3 shows a
typical variation of the normalized cooling rate for a di-
atomic crystal with respect to phonon energy. The discrete
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FIG. 1. �Color online� Material �atomic and MD� metrics of the photon-electron-phonon interactions in laser cooling of Yb+3-doped
solids. �a� Model for the optical phonon coupling with a bound electron followed by photon absorption. �b� Purely radiative emission
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energy level of the ground electronic state oscillates due to
presence of phonons. The absorption rate is proportional to
the product of this discrete energy level and the available
phonon modes within the lattice. Since this absorption rate is
directly proportional to the cooling rate, cooling peak is ob-
served. Now we discuss the three-carrier interaction process
in detail.

A. Radiative transition rate

The fastest transition process in laser cooling is the purely
radiative transition which is a first-order transition process
between photon and electron. Purely radiative transition is
represented by an electric-dipole transition approximation
between the two states having a nonzero matrix element in
the dipole moment integral.

The total Hamiltonian of the system is

H = He + Hph + Hph-e. �3�

The first term is

He = ��e,ga†a , �4�

which is the Hamiltonian of the ion electronic levels, where
��e,g is the energy difference between the optically active
energy levels of the dopant ion, and a†�a� is the creation
�annihilation� operator of an electronic excitation. The sec-
ond term is

Hph = ��ph,ic
†c , �5�

which is the electromagnetic laser field Hamiltonian, where
�ph,i is the incoming photon frequency and c†�c� is the cre-
ation �annihilation� operator of a photon. The third term is

Hph-e = − sph,i · �ph-e���ph,i

2�oV
�1/2

�c† + c��a† + a� , �6�

which is the photon-electron interaction Hamiltonian where
sph,i is the polarization vector of photon, �ph-e is the dipole
moment vector of electronic transition, �o is the vacuum per-
mittivity, and V is the interaction volume.

Now, the Fermi golden rule is used to calculate the total
transition rate �̇ph-e as12

�̇ph-e = �
f

�̇e,i-f =
2	

�
�

f

�Mf ,i�2Dph =
2	

�
�Mf ,i�2


2d�

�uph�2	�3V ,

�7�

where Mf ,i is the interaction matrix element and Dph is the
photon density of states given by 
2d�d
V / �2	�3dEph with
dEph=�uphd
, � is the solid angle, 
 is the wave number,
and uph is speed of light. Since the two states of the electron
have nonzero matrix element, the transition allowed is first
order and the interaction matrix element Mf ,i is expanded as

Mf ,i,1st = �f �Hint�i� = �� f, fph�Hph-e��i, fph + 1� , �8�

where fph is the photon distribution function. Then using
Eqs. �6� and �7� the transition rate becomes

�̇ph-e =
1

�ph-e
=

�e,g
3

3	�o�uph
3 
ph-e

2 , �9�

which is the definition of the Einstein A coefficient �we have
used �=
uph�. For spontaneous emission process, the initial
and final states in Eq. �8� are switched, i.e., �� f , fph
+1�Hph-e��i , fph�, but the transition rate �e-ph is given by
Eq. �9�.
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FIG. 2. �a� Dimensionless emission spectrum of Yb3+: ZBLANP
at T=10 K. The transitions �2F5/2�4→ �2F7/2�0,1,2,3, from the first
excited manifold to four ground level manifolds are extrapolated
�Voigt profile� and are also shown. �b� Dimensionless absorption
spectrum of Yb3+: ZBLANP at T=10 K �Ref. 11�.
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B. Local, vibrational-mode assisted transition rate

The photon-induced, phonon-assisted transition is the es-
sence of the anti-Stokes process. Thus, determining the
physical parameters which affect the entire process is impor-
tant. To account for the transition rate for the photon-
induced, local vibrational mode assisted electronic transition
rate of the optically active ion, we modify the electron-
phonon interaction Hamiltonian in the cooling rate equation,
as described in Refs. 13 and 14 to include the electron-
optical phonon interaction.

Similar to the radiative transition, the Hamiltonian of the
entire system is

H = He + Hp + Hph + Hph-e + He-p. �10�

The first term is the electron Hamiltonian defined before, the
second term is

Hp = �
p

��pb†b , �11�

which is the phonon field Hamiltonian, where �p is the pho-
non frequency and b†�b� is the creation �annihilation� opera-
tor of a phonon in mode p. The third and fourth terms are
photon field and electron-photon interaction Hamiltonian, re-
spectively, defined before.

The fifth term is the electron-phonon interaction Hamil-
tonian described as distortion of the ligand ions affecting the
crystal field. Such a distortion is a function of local strain;
therefore, we expand the crystal field potential in powers of
such strain. The local strain is defined by the strain term �i,j
as

�i,j =
1

2
� �di

�xj
+

�dj

�xi
� �i, j = 1,2,3� . �12�

For simplicity we use

� 	 
 �d

�x



x=0
, �13�

i.e., not taking into any account the anisotropy of the elastic
waves. The origin of the coordinate is the point in the lattice
where the ion nucleus is located. The derivative of the dis-
placement d is set to be the normal coordinate,

Qq = 
 �d

�x



x=0
= � �

2mAC�p
�1/2

�b + b†� , �14�

where q specifies a particular mode. When a particular mode
of vibration dominates the electron-phonon interaction, we
express the electron-phonon interaction Hamiltonian in terms
of the normal coordinates. Using the optical deformation po-
tential theory, the crystal field Hamiltonian term becomes15

Hc = Ho + �e-p,O� Qq. �15�

The higher-order terms have been neglected. Then the inter-
action Hamiltonian term becomes

He-p = �e-p,O� Qq = �e-p,O� � �

2mAC�p
�1/2

�bq + bq
†� , �16�

where �e-p,O� is the electron-phonon coupling potential, �p is
the phonon frequency, and mAC is the effective mass of the
oscillating atoms.

Then the second-order term of the perturbation expansion
gives the transition �absorption� rate �̇ph-e-p �the Fermi
golden rule� as

�̇ph-e-p = �
f

�̇e,i-f =
2	

�
�

f

�Mf ,i�2�D�Ee,f − Ee,i� , �17�

where Ee,i and Ee,f are, respectively, the initial and final en-
ergies of the electron system, and �D is the Dirac delta. The
Mf ,i matrix admits a second-order perturbative expansion as

Mfi,2nd = �
m

�f �Hint�m��m�Hint�i�
Ee,i

T − Ee,m
T � �

m

�� f, fph, fp�Hph-e��m, fph + 1, fp���m, fph + 1, fp�He-p��i, fph + 1, fp + 1�
Ei − �Em − ��p�

. �18�

When the interaction matrix is rewritten using the Hamil-
tonian expansion, the transition rate becomes

�̇ph-e-p =
	�

2mAC

�sph,i · �ph-e�2

�o
�e-p,O�2 Dp�Ep�fp

o�Ep�
Ep

3

��ph,iDph

V
,

�19�

where Dp�Ep� is the phonon density of states of phonon hav-
ing energy Ep, fp is the Bose–Einstein distribution function,
�ph,i is the incoming photon frequency, and Dph is the photon
density of states which integrates to unity, since the incoming
laser light is assumed to be monochromatic and one-photon
interaction is assumed. Note that Dp�Ep� is the phonon den-

sity of states for the normal �local� modes which may be
different from that for the bulk host material.

Now, we write the cooling rate as

Ṡph-e-p = Ṡph,a − Ṡph,e, �20�

where Ṡph-e-p is the cooling rate, and Ṡph,a and Ṡph,e are the
absorption and emission rates, respectively. Then it is pos-
sible to express the cooling rate in terms of the absorption
power as
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Ṡph-e-p = ��ph,i�̇ph-e-p�
V

nddVs − ��ph,e�̇ph-e�
V

nddV

= �1 −
�ph,e

�ph,i

�̇e-ph

�̇ph-e-p
���ph,i�̇ph-e-p�

V

nddVs. �21�

At steady state, we assume that the absorption rate is equal to
the sum of the radiative and nonradiative decay rates, i.e.,
�̇ph-e-p= �̇e-ph+ �̇e-p, and then the quantum efficiency is de-
fined as

�e-ph =
�̇e-ph

�̇ph-e-p

=
�̇e-ph

�̇e-ph + �̇e-p

. �22�

Note that this is an idealized quantum efficiency for the pur-
pose of this theoretical analysis which does not consider the
effects of defects, reabsorption, surface contamination, en-
ergy transfer, etc. Empirical study of contaminates on quan-
tum efficiency can be found in Ref. 16. Then Eq. �21� be-
comes

Ṡph-e-p = �1 −
�ph,e

�ph,i
�e-ph�Aph,anduph�

V

eph,idV

= �1 −
�ph,e

�ph,i
�e-ph��ph,iuph��ph,inph,iV , �23�

where Aph,a is the absorption cross-sectional area which is
defined as Aph,a=��ph,i�̇ph-e-p /uph��ph,inph,i, nd is the dopant
concentration, �ph,i is the absorption coefficient �which is the
product of Aph,a and nd�, and nph,i is the number of photons
per unit volume. The spectral absorptance �ph,i is related to
the absorption coefficient �for optically thin solid� as

�ph,i = 1 − exp�− �ph,iL� � �ph,iL, �ph,iL � 1, �24�

and Ṡph,a=�ph,iQph,i, where Qph,i is the incident laser power.
Then Eq. �23� becomes

Ṡph-e-p = �ph,�,iQph,i�1 −
�ph,e

�̄ph,i

�e-ph� . �25�

Using the the definition of absorptance given in Eq. �23�
we have

Ṡph-e-p =
	�

2�omAC
�
ph-e�2�e-p,O�2 Dp�Ep�fp

o�Ep�
Ep

3

��ph,indL

uph

��1 −
�ph,e

�̄ph,i

�e-ph�Qph,i, �26�

for the optical phonon absorption. We have used the spatial
average of the transition dipole moment, which couples with
the incoming polarization, as ��sph,i ·�ph-e�2�= �
ph-e /31/2�2

= �
ph-e�2.
From Eq. �26�, the cooling rate is a function of atomic and

MD quantities, including �e-p,O� , Ep, and Dp�Ep�. Next, we
examine these quantities in search for the optimal cooling
rate.

II. ELECTRON-PHOTON INTERACTION

The electron-photon interaction is characterized by an
electric dipole transition from the initial state to the final
state. In order to develop material selection guidelines for
choosing the rare-earth ion, we perform an order of magni-
tude estimation by first introducing a simplified transition
dipole moment estimation based on the Hatree–Fock inte-
grals. Then we use the Judd–Ofelt theory �semiempirical� for
comparison and also use this, more accurate calculation of
the transition dipole moment in the cooling rates.

A. Charge-displacement approximation for �ph-e

For the rare-earth compounds, the multiplicity of the f
states and related properties such as the magnetic moment
and spectra indicate that for most of the rare-earth group it is
a good approximation to consider f electrons as atom-like
orbitals.17 The calculation of a single particle 4f-electron
wave function in atom shows that even if these states are
occupied beyond the 5s, 5p, and 6s orbitals, the charge dis-
tribution of the 4f electron is such that most of it is inside the
sphere of maximum charge density of the 5s and 5p levels.
This is attributed to the dominant role played by the effective
f potential �4f�r�, a radial potential well confining the 4f
wave function to a small region of space. The resultant wave
function �4f

o is atom-like. When the rare earth ion is in a
solid, the boundary conditions and potential well change,
mainly in the outer most parts of the cell, through the super-
position of the atomic potential wells. The change in the
potential results in a change in the electron wave function to
�4f, which can be written as the sum of the atom-like wave
function and a polarization wave function �4f� . �4f� is taken
orthogonal to �4f

o , has a nonatomic character, and has contri-
bution outside the sphere where 5s, 5p, and 5d electrons
have their maximum charge density.17 So, we write

�4f = an�4f
o + �1 − an

2�1/2�4f� , �27�

where �4f, �4f
o , and �4f� are normalized and an depends on the

total amount of f character for a given configuration 4fn. The
lower the average energy of the f-electron band in the fn

TABLE I. Energy eigenvalues and average radii of 4f electrons
in rare-earth ions �Ref. 18�.

z Element E4f �eV� �R4f� �Å�

59 Pr −14.97 0.526

60 Nd −16.33 0.504

61 Pm −17.14 0.486

62 Sm −18.23 0.467

63 Eu −19.32 0.451

65 Tb −19.05 0.429

66 Dy −19.05 0.418

67 Ho −19.32 0.407

68 Er −19.32 0.398

69 Tm −19.59 0.389

70 Yb −19.86 0.379
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configuration for that atom in crystals, the larger the average
an. In general, an=an�Ee�, and an

2�Ee,1��an
2�Ee,2�, for Ee,1

�Ee,2 within an f band. We assume the ground state to be
composed of the lowest-energy state and take an

2	1. This
allows us to approximate the wave function of the 4f elec-
tron in crystals by an atom-like wave function.

The atom-like wave functions of 4f electrons for the rare-
earth ions have been calculated numerically by solving the
Hartree–Fock–Slater equation and using the self-consistent
field method,18 which is expressed as


−
d2

dr*2 +
l�l + 1�

r*2 + �*�r��Pnl�r� = E
nl
* Pnl�r� ,

Pnl�r� =
1

4	
�

0

2	 �
0

	

r�nl
o �r�sin �d�d� . �28�

From this, the total energy of 4f electrons is found and is
given in Table I.

To estimate 
ph-e from the energy eigenvalues listed in
Table I, we examine the definition of the transition dipole
moment

�ph-e =� �
f
*ecx�idV . �29�

The transition dipole moment �ph-e is approximated as elec-
tronic charge times the net displacement �Re,if of the opti-
cally active electron during the transition, or

��ph-e� � g
ec�Re,if , �30�

where g
 is a dipole factor which depends on the shapes of
the wave functions �initial and final states� and an is a mea-
sure of atom-like behavior of the 4f electron in the con-
densed state.

In the neighborhood of the average 4f electron radius
�R4f�, we can approximate the potential function �*�r�� l�l
+1� /r*2 �Fig. 4� for all rare-earth elements of interest. Here,

TABLE II. Radial charge displacement �Re estimates and corresponding g
 values for some rare-earth
elements doped in LaF3 crystal, calculated using 
ph−e from Table IV.

z Element Transition �Ee,g �eV� �Re �Å� ec�Re �C m� g


59 Pr3+ 1D2→ 3H4 2.07 0.034 5.44�10−31 0.17
3P0→ 3H4 2.53 0.041 6.56�10−31 0.36

60 Nd3+ 4F3/2→ 4I9/2 1.41 0.020 3.20�10−31 0.40

61 Pm3+ 5F1→ 5I4 1.52 0.020 3.20�10−31 0.35

62 Sm3+ 4G5/2→ 6H5/2 2.22 0.027 4.32�10−31 0.13

66 Dy3+ 4F9/2→ 6H15/2 2.60 0.027 4.32�10−31 0.15

67 Ho3+ 5S2→ 5I8 2.27 0.023 3.68�10−31 0.23
5F5→ 5I8 1.91 0.019 3.04�10−31 0.37

68 Er3+ 4S3/2→ 4I15/2 2.27 0.022 3.52�10−31 0.22

69 Tm3+ 1D2→ 3H6 3.46 0.033 5.28�10−31 0.21

69 Tm3+ 1G4→ 3H6 2.63 0.025 4.00�10−31 0.12
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FIG. 4. �Color online� Comparison between �*�r*� �Ref. 19�
and suggested simple relation �*=12 /r*2 for Yb. �*�r*� is approxi-
mated by 12 /r*2 for rB /2�r�rB.
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FIG. 5. The dipole factor g
 values for different rare-earth ions,
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 values close to each
other, showing dependence of g
 on the initial and final state wave
functions.
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potential function �*�r�=2merB
2 ��r� /�2, E*=2merB

2 E /�2,
and r*=r /rB is a dimensionless parameter, where the rB is
the Bohr radius. Then we write the dimensionless transition
energy as

�E
e,g
* = E

e,f
* − E

e,i
* =

1

2
��*�Re,i� − �*�Re,f�� � 6� 1

R
e,i
*2 −

1

R
e,f
*2�

Ee,f + Ee,i � 2E4f

1

R
e,i
*2 +

1

R
e,f
*2 � 2

1

R4f
*2 . �31�

We assume Ee,f +Ee,i	2E4f, to estimate �Re=Rf −Ri. Table I
lists �Re and g
, estimated for the rare-earth ions doped in
the LaF3 crystal. Figure 5 shows that the g
 values for a
particular transition between similar set of initial and final
states are close. Table II lists the values of g
 for the various
rare-earth ions with different initial and final states. The
magnitude of g
 for a transition between similar states is
expected to be higher than for transitions between dissimilar
states, due to a better overlap between the spherical harmon-
ics of initial and final states in Eq. �29�. For example, g
 for
an 2F5/2 to 2F7/2 transition in Yb is expected to be higher than
any other transitions in rare-earth ions. For Yb3+ in CaF2
crystal, ec�Re is estimated as 1.75�10−31 C m, which is
nearly the same as the experimental value of 1.81
�10−31 C m, which means an F→F transition should also
have a high value of g
.

B. Judd-Ofelt theory estimation of transition dipole moment

Judd–Ofelt theory gives an accurate estimation of transi-
tion dipole moment with minimal experimental input, and

ph-e is determined by the dipole approximation20


ph-e
2 =

1

�2J + 1�
��F̄2 + nM̄2� , �32�

where F̄2 and M̄2 represent the matrix elements of the
electric and magnetic dipole operators, respectively, joining

an initial state J to the final state J�, i.e., 2S+1LJ→ 2S�+1LJ�
� ,

�= �n2+2�2 /9n, and n is the refractive index of the medium.
The factor 2J+1 is added, since the matrix elements of 
e
are summed over all components of the initial state i. Since
the photon-induced electron transition is electric in nature,

we will only discuss F̄2 component.
The transition dipole moment of induced electric dipole

transition within the fn shell configuration is independently
derived by Judd and Ofelt and is known as the Judd–Ofelt
theory.21 Judd–Ofelt theory uses semiempirical data to find
the various atomic parameters of the rare-earth �trivalent lan-

thandes� ions. F̄2 matrix element is expanded as F̄2

=ec
2�i=2,4,6Bi��J�U�i����J��2 to give the transition dipole mo-

ment as


ph-e
2 =

1

�2J + 1�
�n2 + 2�2

9n
ec

2 �
i=2,4,6

Bi��J�U�i����J��2,

�33�

where Bi is the crystal field parameter given in Table III and
U�i� is a unit tensor operator of rank i where i=2,4 ,6. The
crystal parameter Bi is defined by Bi= �2i+1��k�Dk�2�2k
+1�−1I2�k , i�, where Dk �k odd� are the odd-parity terms in
the static crystal field expansion and I2�k , i� contain integrals
involving the radial parts of the 4fn wave functions, the ex-
cited opposite-parity electronic-state wave functions, and the
energy separating these states.22 The matrix element
��J�U�i����J��2 does not vary with the host; therefore, the
value calculated in Ref. 23 can be used for most of the elec-
tronic transition of the rare-earth ions. Using the above rela-
tionship, the radiative lifetimes and the electric dipole mo-
ment are calculated for rare-earth ions in LaF3 crystal as
listed in Table IV.

TABLE III. Values of Bi in the Judd–Ofelt transition dipole
moment relation for some rare-earth ion in LaF3 �Ref. 23�.

Ion
B2�10−20

�cm2�
B4�10−20

�cm2�
B6�10−20

�cm2�

Nd3+ 0.35 2.57 2.50

Eu3+ 1.19 1.16 0.39

Tb3+ 1.1 1.4 0.9

Ho3+ 1.16 1.38 0.88

Er3+ 1.07 0.28 0.63

Tm3+ 0.52 0.59 0.22

TABLE IV. Calculated values of radiative lifetime and electric dipole moment for some rare-earth ions in
LaF3 crystal �Ref. 23�. The index of refraction n is between 1.57 and 1.65.

Ion Transition
�Ee,g

�cm−1� ��J�U�2����J��2 ��U�4���2 ��U�6���2
�r

�
s�

e

�C m�

Nd3+ 4F3/2→ 4I9/2 11386 0.0000 0.2283 0.0554 635 1.31�10−31

Tb3+ 5D3→ 7F6 4294 0.0000 0.2323 0.4129 809 4.98�10−32

Ho3+ 5F5→ 5I8 11137 0.0000 0.0102 0.0930 778 1.14�10−31

Er3+ 4S3/2→ 4I15/2 22495 0.0000 0.0000 0.1255 1020 7.67�10−32

Tm3+ 1D2→ 3H6 15027 0.0000 0.0000 0.2550 137 1.12�10−31

Tm3+ 1G4→ 3H6 5675 0.5395 0.7261 0.2421 1560 4.93�10−32
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III. ELECTRON-LATTICE INTERACTION FOR OPTICAL
PHONON

Electron-phonon interaction involves several physical
parameters which characterize its strength. The electron-
phonon coupling is defined using a simplified defect model
at the ion site, and the available phonon density of states is
estimated using the Debye-Gaussian model.

A. Electron-phonon coupling

Electron-phonon coupling is analogous to the deformation
potential theory in semiconductors; however, the domain
modification is necessary, due to the discrete state nature of
the bound electrons. For example, while semiconductor de-
formation potential is defined within the boundary of a unit
cell, the electron-phonon coupling potential is here defined at
the doped ion site.

We adapt a defect model to estimate the electron-phonon
coupling potential using electrons in an infinite square well.
The solution is not exact; however, this interpretation pro-
vides the physical picture of the electron-phonon coupling
for different host materials.24 The doped ion is treated as a
defect site surrounded by an infinite potential. Although the
electron experiences potential by the nucleus of the doped
ion, this is neglected when comparing electrons in different
host materials; thus, the interaction potential is not an abso-
lute value, but a relative one which varies for different host
constituents. Figure 6�a� shows the electron trapped in an
infinite square well of width 2Q1. The equilibrium bond
lengths are determined by the intermolecular forces and the

structure of the molecular complex, estimated from the struc-
tural metrics.25 The peak stretching mode frequency is esti-
mated using the combinative rule given as

�AC = gs��AA�CC�1/2, �34�

where gs is a structural parameter which depends on the crys-
tal structure, and �AC is the estimated force constant between
anion and cation, using the monatomic force constants �AA
and �CC. Figure 6�b� shows that electron in an infinite square
well at the excited state. Figure 6�c� shows the configuration
coordinate diagram for the two states.

Estimated magnitudes of gs, for some related crystals, are
listed in Table V. Satisfactory results have been reported in
Ref. 26, using these estimates. The estimated peak phonon
frequency, for some elements, is plotted in Fig. 7, for C-F
crystal, where C is the cation element. As shown in the fig-
ure, the Periodic Table first column alkali metals tend to have
a lower peak energy. Generally, trend follows the Periodic
Table row, indicating relation to the outer most electronic
configuration of the cation. This relation is not pursued fur-
ther here. For the remainder of the analysis, these phonon
peaks are assumed as the most probable phonon energies in
the coupling with electron of the ion, at moderate tempera-
tures. Figure 8 shows the variation of gs with respect to the
atomic number and some crystal structure groups are identi-
fied. No particular trend is found; however, all gs values are
in the 0.2–0.5 range.

The ground-state energy of the electron in Fig. 6�a� is

AnionCation

Ligands

2Q1

Q1-Q1

Total
Energy

Q

E0
Ei

2Q1+2�Q

Ef

Ion

Ground Statei

f
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(under Energy
Minimization)
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I
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2( )2p

pm ω∆ h=

Atomic
Displacement

0

Ee,i =
ci

(2Q1)2
ΓIAC

1
2+ p∆

2

Ee,f =
cf

(2Q1+2�Q )2
ΓIAC

1
2+ p∆

2

AC

1
2( )2p

pm ω∆ h=
AC

cf
2Q1 ΓIAC

3

(a) (b)

(c)

�Q =

ГIAC

FIG. 6. Variation of electron energy with respect to the normal coordinate, at the doped-ion site, using an infinite square well model. �a�
Ground state and �b� excited state. �c� The configuration coordinate diagram for the process.
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Ei,1 =
ci

�2Q1�2 +
1

2
�IAC�p

2, �p = � �

2mAC�p,p
�1/2

, �35�

where ci is a constant that depends on the state quantum
number and is independent of the bond, �IAC is the effective
force constant of the ion-anion-cation set, �p is the displace-
ment of the anion, due to a phonon with frequency �p,p, and
mAC is the effective mass of the anion-cation pair.

The excited state energy of the electron in Fig. 6�b� is

Ef =
cf

�2Q1 + 2�Q�2 +
1

2
�IAC�p

2. �36�

Since in general Q1��Q, we expand �2Q1+2�Q�−2 in
terms of strain �Q /Q1, i.e.,

Ef =
cf

�2Q1�2 +
1

2
�IAC��p −

cf

2Q1
3�IAC

�2

− � cf

2Q1
3�2 1

2�IAC
,

�37�

where cf is again independent of the bond. In this treatment,
since ci and cf are independent of ligands and are only a
function of the ion, we compare the magnitude of change in
electronic energy in response to ligand �lattice� vibration. In
Eq. �37�, the electron oscillates about the new equilibrium
point cf /2Q1

3�IAC and its energy is reduced by
�cf /2Q1

3�2�1 /2�IAC�.
To analyze the electron energy change due to the displace-

ment of the ligands �phonon�, a simplified linear-chain model
is considered. As discovered in Ref. 14, the most probable
mode participating with electron of the ion is the breathing
mode of the isolated ion-ligand complex. When considering
the local available modes in the vicinity of the ion, stretching
mode of the anion-cation pair is important.16 Then from
these structural metrics, the peak frequency, �p,p, and the
cut-off frequency, �p,c, are estimated as

�p,p = �gs�AC

mAC
�1/2

, �p,c = �2gs�AC

mAC
�1/2

. �38�

Due to the lattice vibration, the electron will oscillate as a
harmonic oscillator which is displaced by �p. �p is a func-
tion of mAC and �p,p. Then using the following energy of the
harmonic oscillator, the electron-phonon coupling �the rate
of electronic energy change due to displacement of normal
coordinates� is defined as

TABLE V. Magnitude of structural parameter gs for some crys-
talline solids.

Structure Host gs

Cubic CdF2 0.30

AlF3 0.33

LiF 0.23

LiCl 0.36

Tetragonal MgF2 0.35

MnF2 0.31

NiF2 0.27

PbF2 0.23

TlF 0.48

Octahedra Fe3O4 0.20

Trigonal CeF3 0.23

InF3 0.42

LaF3 0.31

FeCl2 0.44

VF3 0.38

Monoclinic SnF2 0.38

ZrCl4 0.54

IrCl3 0.40

Orthorhombic SbF3 0.43

VF4 0.41

Ni
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FIG. 7. �a� Peak stretching mode frequency using diatomic mo-
lecular data for cation-fluoride pair.
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�e-p,O� �
1
2�IAC�p

2

Q1
, Ee-p =

1

2
�IAC�p

2. �39�

For simplicity, a linear derivative of the potential with re-
spect to the normal coordinates is assumed. We have used the
effective ion-anion-cation force constant as a component to
represent the change in the energy of the ion electron. This is
because the lattice is not composed of independent springs
�as shown in the failure of the Einstein heat capacity
model27�. Figure 9 shows the calculated interaction potential
using the square well model, for various atoms in C-F, where
C is the cation. The domain of the interaction is selected as
two atomic spacings extending in the direction of the linear
chain. Unlike semiconductors, for doped ion the electrons of
the rare-earth elements are highly localized within one or
two atomic spacings.28 Thus, it is reasonable to consider only
the short-range interaction of the electron with the optical
phonons. Figure 9 shows that the coupling is a slow decreas-
ing function of the atomic number z.

Preliminary ab initio calculations of the electron-phonon
coupling in Yb3+:Cd-F were conducted using WIEN2K, to
confirm the current hypothesis.29 The discrete energy levels
of the Yb3+:Cd-F was calculated using the electron band
structure near the gamma point. The equilibrium structure
energy level was first plotted and compared with the non-
equilibrium �under longitudinal fluorine atom displacement�
energy levels to estimate the electronic energy change due to
longitudinal optical phonon mode �modeled as oscillation of
fluorine atom�. The results show that the electron-phonon
coupling is within the uncertainty of the analytical model.

B. Phonon density of states estimation

Fernandez et al.13 used the Debye-Gaussian model for the
phonon density of states �DOS�, which is close to the Debye
model at low energies and has a Gaussian distribution at the
center of the phonon spectrum, i.e.,

Dp�Ep� = cDEp
2 exp
− �Ep − Ep,t

�Ep
�2� . �40�

Here, Ep is the phonon energy, Ep,t is the central frequency,
�Ep is the width of the phonon spectrum estimated to be

approximately 0.012 39 eV, and cD is a normalization con-
stant. To find the normalization constant, we integrate the
phonon DOS from zero to Ep,c �the cut-off phonon energy�.
Such an approximation is useful for scaling Dp in mixed
glasses, where the structure is not known and the exact den-
sity of states is difficult to calculate. We use this approxima-
tion to estimate Dp of the host material. The cut-off frequen-
cies calculated in Sec. III A are used to estimate the total
DOS of the bulk materials. Comparison among prediction by
Eq. �40�, prediction by MD simulation for Y2O3,14 and ex-
perimental result for Fe3O4 �Ref. 30� are shown in Figs.
10�a� and 10�b�. There are general agreement with both MD
predictions and the experimental results. However, since the
frequency estimate uses the anion-cation pair, only the sec-
ond peak is estimated and the first and third peaks which are
likely due to cation-cation and anion-anion oscillations can-
not be predicted using Eq. �40�. In the interaction domain �in
the vicinity of the rare-earth ion�, only cation-anion pairs are
relevant, due to absence of anion-anion and cation-cation
oscillating pairs. The predicted peak and cut-off frequency
are compared with the calculated values using the normal
mode frequencies of the host complexes and these are listed
in Table VI.

The frequency estimation is compared with an analytic
normal mode calculation using the interatomic potentials be-
tween the cation and anion, i.e.,
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FIG. 9. Partial electron-optical phonon interaction potential us-
ing the infinite-square-well model for cation-fluoride pair.
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� 	 �IA + 4�IA for IA6 type coordination,

� 	 �IA + 2�AA for IA8 type coordination,

Ep,p = �� �

mA
�1/2

for the breathing modeA1g. �41�

The peak phonon energy of the DOS, Ep,p, is assumed to
coincide with the breathing mode frequency and is related to
the central phonon energy, Ep,t, by

Ep,p = Ep,t −
�E2

Ep,t
. �42�

Since the breathing mode frequency follows Ep,A1g
�mA

−1/2,
the population of the high-energy phonons decreases for the
choice of a lighter anion. For CNBZn glass, Ep,p,CdF2
�0.0421 eV and using Ep,A1g

�mA
−1/2, Ep,p,CdCl2

is estimated
as 0.0310 eV, which matches well with the Cd-F
�0.0459 eV� and Cd-Cl �0.0310 eV� observed vibrations.31

�E can be approximated as the difference in peaks of the
Cd-F and Cd-Cl vibrations; therefore, �E�0.0149 eV,
which is close to �E�0.0124 eV suggested by Fernandez
et al.13

IV. COOLING RATE

A. Optimal photon frequency

As discussed in Sec. I, the input off-resonance photon
frequency determines the frequency of the phonon required
to excite the electron from ground state. In turn, the input
photon can be varied according to the distribution of the
available phonon frequency in the lattice. By using the ap-
proximations made in Sec. III and using Eq. �19�, we write
the cooling rate as

Ṡph-e-p

Qph,i
=

	�

2�omAC
�
ph-e�2�e-p,O�2 Dp�Ep�fp

o�Ep�
Ep

3

��ph,indL

uph

��1 −
�̄ph,e

�ph,i
�e-ph� . �43�

The cooling rate is plotted in Fig. 11�a� by taking into
account the multiple simultaneous transitions from the ex-
cited manifold of Yb3+ to the four ground-state manifolds.32

Then Eq. �43� becomes

Ṡph-e-p

Qph,i
= �

k=0,1,2,3

	�

2�omAC
�
ph-e�2�e-p,O�2

�
Dp�Ep�fp

o�Ep�
Ep

3

��ph,indL

uph
�1 −

�ph,e,k

�ph,i
�e-ph� ,

�44�

where j=0,1 ,2 ,3 represents resonance, first, second, and
third phonon side bands, respectively. The results shows that
the maximum cooling rate is to the left of the phonon peak.
This is due to the phonon distribution function which sup-
presses phonons with higher energy and significantly influ-
ences the cooling rate at low temperatures.

Figure 12 shows distribution of the maximum cooling rate
as a function of the atomic number. The trend is fitted to a
fourth-order polynomial to guide the eyes. The results show
that there are two peaks, between atomic numbers 20 and 30
and 75 and 85. This trend supports the recent successes of
blending of light and heavy cations as host materials for laser
cooling of solids. However, as the temperature decreases and
the available high-energy phonons diminish rapidly �Bose–

TABLE VI. Comparison of the phonon DOS peak energy Ep,p

values using the linear-chain model, with the ion-ligand complex,
and the experimental values for some diatomic crystals.

C-F

Linear chain Complex
Expt.
Ep,pEp,p �eV� Ep,p �eV�

Cd-F 0.0533 0.0421 0.0459

Cd-Cl 0.0302 0.0310 0.0310

Zr-F 0.0722 0.0719

In-F 0.0498 0.0632
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FIG. 11. �Color online� �a� Idealized �resonance� and a realistic
�side bands� normalized cooling rate as a function of phonon en-
ergy, for Yb3+: Zr-F. The cooling efficiencies are also plotted as
solid line. The experimental result �Ref. 6� is also shown.
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FIG. 12. �Color online� Dimensionless cooling rate as a function
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Also, a fourth-order polynomial fit is shown to guide the eyes. Note
that semiconductors and rare-earth materials have been omitted.
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Einstein distribution fp
0�, the cooling rate is quickly sup-

pressed.

B. Optimal host pairs

The above analysis provides a guide to the selection of
ion-host materials for optimal performance. Here we com-
pare various host materials, based on performance by atomic
pairs, and we choose F as one of the atoms. Figure 13�a�
shows variation of dimensionless cooling rate with respect to
temperature, for some C-F pairs with Yb3+ ion. The crystal
structure assumed is fcc, which has C-F pairs as the ion
immediate ligands. Here C is Tl, Zr, Hf, Nb Fe, Mg, and Al.
These structures may not be realized, for example, AlF3 is an
stable, existing compound. However, if a blend of different
C-F pairs are made, the contributions of these pair ligands
exist at the ion site. Figure 13�a� shows that Al, which has
relatively low phonon peak energy predicted by Fig. 11, ex-
hibits high cooling rate over a wide range of temperatures;
however, one can expect that the energy removed per transi-
tion is low �low capacity�. On the contrary, one can expect
the energy removed per transition is high �high capacity� for
Zr �due to relatively high phonon peak energy�, yet the per-
formance decreases rapidly as the temperature decreases.

The inset in Fig. 13�a� shows that at temperatures near
150 K, it is possible to reach even lower temperature with Tl
compared to Zr.

The maximum cooling rate, for some cation-fluoride
pairs, is given in Fig. 13�b�. The results show that the first
column alkali metals from the Periodic Table are not good
candidates for laser cooling at T=300 K. However, due to
the relatively lower phonon energy, these elements are ex-
pected to be more suitable at lower temperatures with the
exception of Cs and Rb. The results are expected from Eq.
�44�, which shows that there are several competing processes
in laser cooling of solids. These are the following: �a� higher
phonon peak energy results in more energy removed per
transition, �b� lower phonon peak energy results in higher
phonon distribution values, �c� low cut-off frequency results
in higher phonon density of states, and �d� higher cut-off
frequency results in higher a nonradiative decay.

Using the above discussions, it is possible to quantita-
tively predict the cooling performance of a blended material.
Figure 14 shows the cooling performance of an example
blend of host materials. In practice, the composition dis-
cussed here may not be realized; however, the blend here
provides an example providing a valuable general guide. The
figure shows that blending materials which have different
phonon peak energies increases the half width of the transi-
tion. This, in turn, increases the transition probability. One
can expect that as the half width broadens, it increases the
probability of various phonon modes available in the lattice
coupling with the electron in oscillation. This blending strat-
egy is expected to increase the absorption rate as much as a
factor of 2.

Results of Figs. 13�a� and 14 suggest using elements Al,
Mn, Na, and Mg in the host blend. Nevertheless, for opti-
mized cooling performance, wide range of elements should
be present in the blend for increased absorption probability
�with the exception of Rb and Cs�.
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FIG. 13. �Color online� �a� Dimensionless cooling rate as a
function of temperature, for Yb3+: Tl-F, Zr-F, Hf-F, Nb-F, Fe-F,
Mg-F, and Al-F. The results are for ideal conditions, i.e., quantum
efficiency of one and identical fcc structures. �b� The maximum,
normalized cooling rate for various cation-fluoride pairs, as func-
tion of phonon energy for Yb3+: C-F. Note that semiconductors and
rare-earth materials have been omitted. The dashed line is only
intended to guide the eyes.
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posed. Although the magnitude of the cooling rate is moderated, the
absorption probability increases as the phonon spectrum broadens.
The cooling rates for diatomic hosts are shown in dashed lines and
exhibit less broadening.
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V. DISCUSSION

A. Transition dipole moment optimization

While selecting the dopant ion for a large 
ph-e, according
to the charge-displacement estimation model, the following
general guidelines apply. First, a large energy gap �Ee,g
would result in higher �Re,if and, therefore, larger 
ph-e.
However, a large �Ee,g also results in a lower cooling effi-
ciency for the overall laser cooling process. A small energy
gap, on the other hand, would lead to high nonradiative de-
cay.

Secondly, a transition between similar states, for example,
2F5/2→ 2F7/2, leads to a larger g
, and, therefore, a larger

ph-e. The excited state chosen for the transition should have
the same total angular momentum as the ground state of the
ion.

Lastly, the energy levels for the transition should be se-
lected in a manner such that there are no allowed energy
levels in between the ground and the excited state manifolds,
which can result in nonradiative decay that severely affects
the cooling efficiency. For example, the radiative lifetime of
4I9/2 state of Er3+ is computed to be 20.7 ms, but its observed
value is 0.15 ms,23 as a result of the nonradiative decay due
to the presence of intermediate levels between 4I9/2 and the
ground state 4I15/2.

The calculated energy levels of various rare-earth ions are
presented in Ref. 33. Ce, Pr, Nd, Pm, Sm, Eu, Tb, and Dy
have energy gaps between the ground state and the lowest
excited state, with magnitudes less than 2kBT �at room tem-
perature�. This would lead to high rates of nonradiative de-
cay. Gd has a very large energy gap between the ground and
the lowest excited state, which would result in a low laser
cooling efficiency. Also, the ground and excited states have
different L values; therefore, a transition between these states
would have a low value of g
. Ho, Er, Tm, and Yb have
ground and excited states with the same total angular mo-
mentum L. Amongst these, Yb has the largest energy gap
�Ee,g between the ground and the lowest excited state, and
should result in high �Re,if and low nonradiative decay.

B. Limits in laser cooling of solids

Figure 15�a� shows a qualitative prediction of the cooling
rate when the phonon limit is removed. The results show that
the maximum off-resonance absorption and the maximum
anti-Stokes cooling will occur when the maximum normal
mode of the complex coincides with the peak of a single
available mode, i.e., all of the available phonon modes are at
the cut-off frequency. This is a hypothetical case since the
integral of phonon DOS at the cut-off frequency has to be
unity �a delta function� meaning there is no other phonon
mode present �except for the phonon modes corresponding to
the cut-off frequency�. This will increase the phonon DOS by
approximately a factor of 10. Note that when the limit from
the structure �multiple phonon energy� is lifted, the absorp-
tion limit becomes only a function of the phonon distribution
function fp

o�T�. Figure 15�b� shows that when multiple-pair
blends are used as hosts and low symmetry is achieved at the
ion site, multiple cooling peaks are possible. Multiple-pair

blends provides multiple phonon DOS peaks which can span
across the phonon spectrum. When low symmetry is present
at the ion site, the normal mode of the complex becomes
broader, allowing multiple phonon mode couplings.

C. Off-resonance transition dipole moment

The structural metrics which are developed above suggest
multiple improvements and explain recent experimental suc-
cess of laser cooling of blend solids. However, to scale vari-
ous blended host material and doped ions, direct comparison
amongst various photon-electron-phonon interaction terms is
necessary. We use Eq. �19� to define an a effective transition
dipole moment which is analogous to the transition probabil-
ity �Einstein coefficient A� when phonon participation is
present, i.e.,

�̇ph-e-p =
1

�ph-e-p

=
�e,g

3
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3
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FIG. 15. �a� Variation of dimensionless cooling rate, absorption
rate, and phonon DOS with respect to phonon energy. Maximum
cooling rate can be achieved when the energy of maximum normal
mode of the ion-ligand complex coincides with the cut-off phonon
energy Ep,c of the host and is the most available mode. �b� Multiple
cooling peaks �increased cooling probabilities� are possible when
multiple blends are present in the host and low symmetry is
achieved at the ion site.
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where 
ph-e-p
2 is the phonon-assisted transition dipole mo-

ment. This effective transition dipole moment gives the
strength of phonon-assisted transition probability for mate-
rial selection and is directly comparable to the resonance
transition dipole moment 
ph-e.

D. Time scales for laser cooling of solids

As mentioned in Sec. I, laser cooling has three processes
and they are characterized by their time constants, namely,
�ph-e, �e-p, and �ph-e-p. Figure 16 shows the temperature de-
pendence of these time constants. The radiative lifetime stays
constant with respect to temperature, while the multiphonon
relaxation time is a strong function of temperature. The mul-
tiphonon decy process is given by34

�̇e-p = �̇ph-e
1 −
exp���p,c/kBT�

exp���p,c/kBT� − 1
�Np

, Np =
Ee,g

��p,c
.

�46�

Then using the host selection metrics presented in the pre-
ceding sections, Eq. �46� is evaluated. The predicted photon-
induced, phonon-assisted transition lifetime is compared
with the experimental lifetime of Ref. 6 and is in good agree-
ment.

Then the dimensionless cooling rate is expressed as

Ṡph-e-p

Qph,i
= ndV

�ph,tr

�ph-e-p

1 −

�̄ph,e

�ph,i

�ph-e
−1

�ph-e
−1 + �e-p

−1 � , �47�

where �ph-e, �e-p, and �ph-e-p are the radiative, nonradiative,
and phonon-assisted transition time constants, respectively,
and �ph,tr is the photon transit time which is defined by
�ph,tr=L /uph, where L is the sample length �along the beam�.
We have neglected the reabsorption of emitted photon since
it is estimated to be only 0.005% of the total emission rate.14

This indicates that unlike energy transport, the energy con-
version process is a product of the time constants of the

processes. The cooling rate is directly limited by the phonon-
assisted absorption process, which has a transition rate 2 or-
ders of magnitude smaller than that of the purely radiative
transition.

Figure 16 also suggests that by optimizing the phonon-
assisted transition rate, the cooling rate increase by a factor
of 2, compared to experiment of Ref. 6, at room temperature.

The sample temperature depends on the balance between
the thermal load �radiative heat transfer from surroundings�
and the laser cooling rate, shown in Fig. 17. The temperature
of the sample is determined from the energy equation

Qph-b = Ṡph-e-p

�1

2
	D2 + 	DL��ph�SB�Ts

4 − T�
4 �

= ndV
�ph,tr

�ph-e-p
�1 −

�̄ph,e

�ph,i

�ph-e
−1

�ph-e
−1 + �e-p

−1 �Qph,i, �48�

where �ph is the total emissivity of the sample, �SB is Stefan–
Boltzmann constant, and Ts and T� are the sample and sur-
roundings temperatures. This shows that as the cooling
power increases, the thermal load increases rapidly restrict-
ing the maximum cooling temperature. With the factor of 2
increase in the cooling rate, a 30% decrease in the Ts is
expected, compared to the existing experiment.6

Further improvement by photon trapping and possibility
of using nanostructures to tailor Dp for improved cooling rate
have been discussed in Ref. 14

VI. CONCLUSION

Laser cooling of solids is interpreted as a phonon absorp-
tion followed by an off-resonance photon absorption process.
The transition dipole moment is expected to be the highest
for Yb3+, due to high-energy separation and no intermediate
available states between the ground and excited states. The
anti-Stokes process is expected to have the highest probabil-
ity when the normal modes of the ion-ligand complex coin-
cide with the maximum available phonon modes predicted
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FIG. 16. �Color online� Variation of time constants as a function
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lowed by the phonon-assisted, photon absorption at low tempera-
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by the diatomic Debye-Gaussian phonon DOS model. The
model predicts that the ideal laser cooling host material var-
ies with target temperature and the model successfully pre-
dicts the recent success in using blends of elements for laser
cooling of solids. New materials such as Mn, Nb, Hf, and
Mg are suggested here for improved cooling at low tempera-
tures. The time constants for the individual transition pro-
cesses are evaluated and the anti-Stokes process is found to
be limited by the phonon-assisted absorption time. The mod-
els �materials metrics� developed here suggest that improve-
ments �over current record� in the cooling rate �and lowered

target temperature� are possible using the identified optimal
ion-host materials.
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